Evolution of a sex megachromosome

Author:

Conte Matthew A.ORCID,Clark Frances E.ORCID,Roberts Reade B.ORCID,Xu LuohaoORCID,Tao Wenjing,Zhou QiORCID,Wang Deshou,Kocher Thomas D.ORCID

Abstract

AbstractChromosome size and morphology vary within and among species, but little is known about either the proximate or ultimate causes of these differences. Cichlid fish species in the tribe Oreochromini share an unusual megachromosome that is ~3 times longer than any of the other chromosomes. This megachromosome functions as a sex chromosome in some of these species. We explore two hypotheses of how this sex megachromosome may have evolved. The first hypothesis proposes that it developed by the accumulation of repetitive elements as recombination was reduced around a dominant sex-determination locus, as suggested by traditional models of sex chromosome evolution. An alternative hypothesis is that the megachromosome originated via the fusion of an autosome with a highly-repetitive B chromosome, one of which had carried a sex-determination locus. Here we test these hypotheses using comparative analysis of several chromosome-scale cichlid and teleost genomes. We find the megachromosome consists of three distinct regions based on patterns of recombination, gene and transposable element content, and synteny to the ancestral autosome. A WZ sex-determination locus encompasses the last ~105Mbp of the 134Mbp megachromosome and the last 47Mbp of the megachromosome shares no obvious homology to any ancestral chromosome. Comparisons across 69 teleost genomes reveal the megachromosome contains unparalleled amounts of endogenous retroviral elements, immunoglobulin genes, and long non-coding RNAs. Although the origin of this megachromosome remains ambiguous, it has clearly been a focal point of extensive evolutionary genomic conflicts. This megachromosome represents an interesting system for studying sex chromosome evolution and genomic conflicts.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3