Abstract
SummaryThe hypothalamus regulates metabolic homeostasis by influencing behavior, energy utilization and endocrine systems. Given its role governing health-relevant traits, such as body weight and reproductive timing, understanding the genetic regulation of hypothalamic development and function should yield insights into these traits and diseases. However, given its inaccessibility, studying human hypothalamic gene regulation has proven challenging. To address this gap, we generated a chromatin architecture atlas of an established embryonic stem cell (ESC)-derived hypothalamic-like neuron (HN) model across three stages of in vitro differentiation. We profiled accessible chromatin and identified physically interacting contacts between gene promoters and their putative cis-regulatory elements (cREs) to characterize changes in the gene regulatory landscape during hypothalamic differentiation. Next, we integrated these data with GWAS loci for multiple traits and diseases enriched for heritability in these cells, identifying candidate effector genes and cREs impacting transcription factor binding. Our results reveal common target genes for these traits, potentially identifying core hypothalamic developmental pathways. Our atlas will enable future efforts to determine precise mechanisms underlying hypothalamic development with respect to specific disease pathogenesis.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献