Crystal structure of steroid reductase SRD5A reveals conserved steroid reduction mechanism

Author:

Han Yufei,Zhuang Qian,Sun Bo,Lv Wenping,Wang Sheng,Xiao Qingjie,Pang Bin,Zhou Youli,Wang Fuxing,Chi Pengliang,Wang Qisheng,Li Zhen,Zhu Lizhe,Li Fuping,Deng Dong,Chiang Ying-Chih,Li Zhenfei,Ren Ruobing

Abstract

AbstractSteroid hormones are essential in stress response, immune system regulation, and reproduction in mammals. Steroids with 3-oxo-Δ4structure, such as testosterone, androstenedione and progesterone, could be catalyzed by steroid 5α-reductases (SRD5As) to generate their corresponding 3-oxo-5α steroids, which are essential for multiple physiological and pathological processes. Abnormal activities of SRD5As will lead to benign prostatic hyperplasia, alopecia, prostatic cancer or infertility due to the poor quality of sperms. However, the detailed reduction mechanisms of SRD5As remain elusive. Here we report the crystal structure of PbSRD5A, which shares 60.6% and 51.5% sequence similarities with human SRD5A1 and −2 respectively, fromProteobacteria bacteriumin complex with the cofactor NADPH at 2.0 Å resolution. PbSRD5A exists as a monomer comprised of seven transmembrane segments (TMs). The TM1-4 enclose a hydrophobic cavity for steroids substrates binding, whereas TM5-7 coordinate with cofactor NADPH through extensive hydrogen bonds network. Homology-based structural models of HsSRD5A1 and −2, together with extensive biochemical characterizations, for the first time unveiled the substrate recognition of SRD5As and provide an important framework for further understanding of the mechanism of NADPH mediated steroids 3-oxo-Δ4reduction. Based on these analyses, the design of therapeutic molecules targeting SRD5As with improved specificity and therapeutic efficacy would be possible.One Sentence SummaryStructural and biochemical characterizations decipher the evolutionarily conserved mechanism in steroid 5α-reductases catalyzing NADPH mediated steroids reduction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3