Impulse dispersion of aerosols during singing and speaking

Author:

Echternach Matthias,Gantner Sophia,Peters Gregor,Westphalen Caroline,Benthaus Tobias,Jakubaß Bernhard,Kuranova Liudmila,Döllinger Michael,Kniesburges Stefan

Abstract

AbstractGroup singing events have been linked to several outbreaks of infection during the CoVID-19 pandemic, leading to singing activities being banned in many areas across the globe. This link between singing and infection rates supports the possibility that aerosols are partly responsible for person-to-person infection. In contrast to droplets, the smaller aerosol particles do not fall to the ground within a short distance after being expelled by e.g. a singer. Aerosol particles hover and spread via convection in the environmental air. According to the super-spreading theory, choir singing and loud talking (theater and presentations) during rehearsals or performances may constitute a high risk of infectious virus transmission to large numbers of people. Thus, it is essential to define the safety distances between singers in super-spreading situations.The aim of this study is to investigate the impulse dispersion of aerosols during singing and speaking in comparison to breathing and coughing. Ten professional singers (5 males and 5 females) of the Bavarian Radio Chorus performed 9 tasks including singing a phrase of Beethoven’s 9th symphony, to the original German text. The inhaled air volume was marked with small aerosol particles produced via a commercial e-cigarette. The expelled aerosol cloud was recorded with three high definition TV cameras from different perspectives. Afterwards, the dimensions and dynamics of the aerosol cloud was measured by segmenting the video footage at every time point.While the median expansion was below 1m, the aerosol cloud was expelled up to 1.4m in the singing direction for individual subjects. Consonants produced larger distances of aerosol expulsion than vowels. The dispersion in the lateral and vertical dimension was less pronounced than the forward direction. After completion of each task, the cloud continued to distribute in the air increasing its dimensions. Consequently, we propose increasing the current recommendations of many governmental councils for choirs or singing at religious services from 1.5m to the front and 1m to the side to a distance between choir singers of 2m to the front and 1.5m to the sides.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3