Biology and physics of heterochromatin-likedomains/complexes

Author:

Singh Prim B.ORCID,Belyakin Stepan N.,Laktionov Petr P.

Abstract

AbstractThe hallmarks of constitutive heterochromatin, HP1 and H3K9me2/3, assemble heterochromatin-likedomains/complexesoutsidecanonical constitutively heterochromatic territories where they regulate chromatin-templated processes. Domains are more than 100kb in size; complexes less than 100kb. They are present in the genomes of organisms ranging from fission yeast to man, with an expansion in size and number in mammals. Some of the likely functions of the domains/complexes include silencing of the donor mating type region in fission yeast, regulation of mammalian imprinted genes and the phylotypic progression during vertebrate development. Farcis- andtrans-contacts between micro-phase separated domains/complexes in mammalian nuclei contribute to the emergence of epigenetic compartmental domains (ECDs) detected in Hi-C maps. We speculate that a thermodynamic description of micro-phase separation of heterochromatin-likedomains/complexes will require a gestalt shift away from the monomer as the “unit of incompatibility”, where it is the choice of monomer that determines the sign and magnitude of the Flory-Huggins parameter, χ. Instead, a more dynamic structure, the oligo-nucleosomal “clutch”, consisting of between 2 to 10 nucleosomes is both the long sought-after secondary structure of chromatin and its unit of incompatibility. Based on this assumption we present a simple theoretical framework that enables an estimation of χ for domains/complexes flanked by euchromatin and thereby an indication of their tendency to phase separate. The degree of phase separation is specified by χN, where N is the number of “clutches” in a domain/complex. Our approach may provide an additional tool for understanding the biophysics of the 3D genome.

Publisher

Cold Spring Harbor Laboratory

Reference253 articles.

1. Wolffe, A.P. Chromatin. Structure and Function. 3rd ed. Academic Press: London, UK. 2012. ISBN: 9780127619156.

2. The Phenomenon of Position Effect

3. Position-Effect Variegation, Heterochromatin Formation, and Gene Silencing in Drosophila

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3