Topographic deep artificial neural networks reproduce the hallmarks of the primate inferior temporal cortex face processing network

Author:

Lee HyodongORCID,Margalit EshedORCID,Jozwik Kamila M.,Cohen Michael A.,Kanwisher NancyORCID,Yamins Daniel L. K.,DiCarlo James J.ORCID

Abstract

A salient characteristic of monkey inferior temporal (IT) cortex is the IT face processing network. Its hallmarks include: “face neurons” that respond more to faces than non-face objects, strong spatial clustering of those neurons in foci at each IT anatomical level (“face patches”), and the preferential interconnection of those foci. While some deep artificial neural networks (ANNs) are good predictors of IT neuronal responses, including face neurons, they do not explain those face network hallmarks. Here we ask if they might be explained with a simple, metabolically motivated addition to current ANN ventral stream models. Specifically, we designed and successfully trained topographic deep ANNs (TDANNs) to solve real-world visual recognition tasks (as in prior work), but, in addition, we also optimized each network to minimize a proxy for neuronal wiring length within its IT layers. We report that after this dual optimization, the model IT layers of TDANNs reproduce the hallmarks of the IT face network: the presence of face neurons, clusters of face neurons that quantitatively match those found in IT face patches, connectivity between those patches, and the emergence of face viewpoint invariance along the network hierarchy. We find that these phenomena emerge for a range of naturalistic experience, but not for highly unnatural training. Taken together, these results show that the IT face processing network could be a consequence of a basic hierarchical anatomy along the ventral stream, selection pressure on the visual system to accomplish general object categorization, and selection pressure to minimize axonal wiring length.

Publisher

Cold Spring Harbor Laboratory

Reference84 articles.

1. Using goal-driven deep learning models to understand sensory cortex

2. Krizhevsky A , Sutskever I , Hinton GE (2012) Imagenet classification with deep convolutional neural networks in Advances in neural information processing systems. pp. 1097–1105.

3. Large-Scale, High-Resolution Neurophysiological Maps Underlying fMRI of Macaque Temporal Lobe

4. Preface: Cerebral Cortex Has Come of Age

5. Object vision and spatial vision: two cortical pathways

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3