Structure and assembly of the diiron cofactor in the heme-oxygenase-like domain of theN-nitrosourea-producing enzyme SznF

Author:

McBride Molly J.,Pope Sarah R.,Hu Kai,Slater Jeffrey W.,Okafor C. Denise,Balskus Emily P.,Bollinger J. Martin,Boal Amie K.

Abstract

AbstractIn biosynthesis of the pancreatic cancer drug streptozotocin, the tri-domain nonheme-iron oxygenase, SznF, hydroxylatesNδandNω’ ofNω-methyl-L-arginine before oxidatively rearranging the triply modified guanidine to theN-methyl-N-nitrosourea pharmacophore. A previously published structure visualized the mono-iron cofactor in the enzyme’s C-terminal cupin domain, which effects the final rearrangement, but exhibited disorder and minimal metal occupancy in the site of the proposed diiron cofactor in theN-hydroxylating heme-oxygenase-like (HO-like) central domain. Here we leverage our recent report of an intensely absorbingµ-peroxodiiron(III/III) intermediate formed from the Fe2(II/II) complex and O2to understand assembly of the diiron cofactor in the HO-like domain and to obtain structures with both SznF iron cofactors bound. Tight binding at one diiron subsite is associated with a conformational change, which is followed by weak binding at the second subsite and rapid capture of O2by the Fe2(II/II) complex. Differences between iron-deficient and iron-replete structures reveal both the conformational change required to form the O2-reactive Fe2(II/II) complex and the structural basis for cofactor instability, showing that a ligand-harboring core helix dynamically refolds during metal acquisition and release. The cofactor also coordinates an unanticipated Glu ligand contributed by an auxiliary helix implicated in substrate binding by docking and molecular dynamics simulation. The additional ligand is conserved in another experimentally validated HO-likeN-oxygenase but not in two known HO-like diiron desaturases. Among ∼9600 sequences identified bioinformatically as belonging to the emerging HO-like diiron protein (HDO) superfamily, ∼25% have this carboxylate residue and are thus tentatively assigned asN-oxygenases.Significance statementThe enzyme SznF assembles theN-nitrosourea pharmacophore of the drug streptozotocin. Its centralN-oxygenase domain resembles heme-oxygenase (HO) and belongs to an emerging superfamily of HO-like diiron enzymes (HDOs) with unstable metallocofactors that have resisted structural characterization. We investigated assembly of the O2-reactive diiron complex from metal-free SznF and Fe(II) and leveraged this insight to obtain the first structure of a functionally assigned HDO with intact cofactor. Conformational changes accompanying cofactor acquisition explain its instability, and the observation of an unanticipated glutamate ligand that is conserved in only a subset of the HDO sequences provides a potential basis for top-level assignment of enzymatic function. Our results thus provide a roadmap for structural and functional characterization of novel HDOs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3