A developmental stretch-and-fill process that optimises dendritic wiring

Author:

Baltruschat Lothar,Tavosanis GaiaORCID,Cuntz HermannORCID

Abstract

AbstractThe way in which dendrites spread within neural tissue determines the resulting circuit connectivity and computation. However, a general theory describing the dynamics of this growth process does not exist. Here we obtain the first time-lapse reconstructions of neurons in living fly larvae over the entirety of their developmental stages. We show that these neurons expand in a remarkably regular stretching process that conserves their shape. Newly available space is filled optimally, a direct consequence of constraining the total amount of dendritic cable. We derive a mathematical model that predicts one time point from the previous and use this model to predict dendrite morphology of other cell types and species. In summary, we formulate a novel theory of dendrite growth based on detailed developmental experimental data that optimises wiring and space filling and serves as a basis to better understand aspects of coverage and connectivity for neural circuit formation.In briefWe derive a detailed mathematical model that describes long-term time-lapse data of growing dendrites; it optimises total wiring and space-filling.HighlightsDendrite growth iterations guarantee optimal wiring at each iteration.Optimal wiring guarantees optimal space filling.The growth rule from fly predicts dendrites of other cell types and species.Fly neurons stretch-and-fill target area with precise scaling relations.Phase transition of growth process between fly embryo and larval stages.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3