MARCKS domain phosphorylation regulates the differential interaction of Diacylglycerol Kinase ζ with Rac1, RhoA and Syntrophin

Author:

Ard Ryan,Maillet Jean-Christian,Daher Elias,Phan Michael,Zinoviev Radoslav,Parks Robin J.,Gee Stephen H.

Abstract

AbstractCells can switch between Rac1, lamellipodia-based and RhoA, blebbing-based migration modes but the molecular mechanisms regulating this choice are not fully understood. Diacylglycerol kinase ζ (DGKζ), which phosphorylates diacylglycerol to yield phosphatidic acid, forms independent complexes with Rac1 and RhoA, selectively dissociating each from RhoGDI. DGKζ catalytic activity is required for Rac1 dissociation but is dispensable for RhoA dissociation. Instead, DGKζ functions as a scaffold that stimulates RhoA release by enhancing RhoGDI phosphorylation by protein kinase Cα (PKCα). Here, PKCα-mediated phosphorylation of the DGKζ MARCKS domain increased DGKζ association with RhoA and decreased its interaction with Rac1. The same modification increased binding of the DGKζ C-terminus to the α1-syntrophin PDZ domain. Expression of a phosphomimetic DGKζ mutant stimulated membrane blebbing in mouse embryonic fibroblasts and C2C12 myoblasts, which was augmented by inhibition of endogenous Rac1. DGKζ expression in differentiated C2 myotubes, which have low endogenous Rac1 levels, also induced substantial membrane blebbing via the Rho-ROCK pathway. These events were independent of DGKζ catalytic activity, but dependent upon a functional C-terminal PDZ-binding motif. Rescue of RhoA activity in DGKζ-null cells required the PDZ-binding motif, suggesting syntrophin interaction is necessary for optimal RhoA activation. Collectively, our results define a switch-like mechanism involving DGKζ phosphorylation by PKCα that favours RhoA-driven blebbing over Rac1-driven lamellipodia formation and macropinocytosis. These findings provide a mechanistic basis for the effect of PKCα signaling on Rho GTPase activity and suggest PKCα activity plays a role in the interconversion between Rac1 and RhoA signaling that underlies different migration modes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3