Biodiversity Soup II: A bulk-sample metabarcoding pipeline emphasizing error reduction

Author:

Yang Chunyan,Bohmann Kristine,Wang Xiaoyang,Cai Wang,Wales Nathan,Ding Zhaoli,Gopalakrishnan Shyam,Yu Douglas W.ORCID

Abstract

AbstractDespite widespread recognition of its great promise to aid decision-making in environmental management, the applied use of metabarcoding requires improvements to reduce the multiple errors that arise during PCR amplification, sequencing, and library generation. We present a co-designed wet-lab and bioinformatic workflow for metabarcoding bulk samples that removes both false-positive (tag jumps, chimeras, erroneous sequences) and false-negative (‘dropout’) errors. However, we find that it is not possible to recover relative-abundance information from amplicon data, due to persistent species-specific biases.To present and validate our workflow, we created eight mock arthropod soups, all containing the same 248 arthropod morphospecies but differing in absolute and relative DNA concentrations, and we ran them under five different PCR conditions. Our pipeline includes qPCR-optimized PCR annealing temperature and cycle number, twin-tagging, multiple independent PCR replicates per sample, and negative and positive controls. In the bioinformatic portion, we introduceBegum, which is a new version ofDAMe(Zepeda-Mendozaet al. 2016.BMC Res. Notes9:255) that ignores heterogeneity spacers, allows primer mismatches when demultiplexing samples, and is more efficient. LikeDAMe, Begumremoves tag-jumped reads and removes sequence errors by keeping only sequences that appear in more than one PCR above a minimum copy number per PCR. The filtering thresholds are user-configurable.We report that OTU dropout frequency and taxonomic amplification bias are both reduced by using a PCR annealing temperature and cycle number on the low ends of the ranges currently used for the Leray-FolDegenRev primers. We also report that tag jumps and erroneous sequences can be nearly eliminated withBegumfiltering, at the cost of only a small rise in dropouts. We replicate published findings that uneven size distribution of input biomasses leads to greater dropout frequency and that OTU size is a poor predictor of species input biomass. Finally, we find no evidence for ‘tag-biased’ PCR amplification.To aid learning, reproducibility, and the design and testing of alternative metabarcoding pipelines, we provide our Illumina and input-species sequence datasets, scripts, a spreadsheet for designing primer tags, and a tutorial.

Publisher

Cold Spring Harbor Laboratory

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3