Quorum Sensing Regulates ‘swim-or-stick’ Lifestyle in the Phycosphere

Author:

Fei Cong,Ochsenkühn Michael A.,Shibl Ahmed A.,Isaac Ashley,Wang Changhai,Amin Shady A.

Abstract

Originality-significance statementMotility and biofilm formation are processes regulated by quorum sensing (QS) in bacteria. Both functions are believed to play an important role in interactions between bacteria and phytoplankton. Here, we show that two bacterial symbionts from the microbial community associated with a ubiquitous diatom switch their motile lifestyle to attached cells while an opportunist bacterium from the same community is incapable of attachment, despite possessing the genetic machinery to do so. Further work indicated that the opportunist lacks QS signal synthases while the symbionts produce three QS signals, one of which is mainly responsible for regulating symbiont colonization of the diatom microenvironment. These findings suggest that QS regulates colonization of diatom surfaces and further work on these model systems will inform our understanding of particle aggregation and bacterial attachment to marine snow and how these processes influence the global carbon cycle.SummaryInteractions between phytoplankton and bacteria play major roles in global biogeochemical cycles and oceanic nutrient fluxes. These interactions occur in the microenvironment surrounding phytoplankton cells, known as the phycosphere. Bacteria in the phycosphere use either chemotaxis or attachment to benefit from algal excretions. Both processes are regulated by quorum sensing (QS), a cell-cell signaling mechanism that uses small infochemicals to coordinate bacterial gene expression. However, the role of QS in regulating bacterial attachment in the phycosphere is not clear. Here, we isolated a Sulfitobacter pseudonitzschiae F5 and a Phaeobacter sp. F10 belonging to the marine Roseobacter group and an Alteromonas macleodii F12 belonging to Alteromonadaceae, from the microbial community of the ubiquitous diatom Asterionellopsis glacialis. We show that only the Roseobacter group isolates (diatom symbionts) can attach to diatom transparent exopolymeric particles. Despite all three bacteria possessing genes involved in motility, chemotaxis, and attachment, only S. pseudonitzschiae F5 and Phaeobacter sp. F10 possessed complete QS systems and could synthesize QS signals. Using UHPLC-MS/MS, we identified three QS molecules produced by both bacteria of which only 3-oxo-C16:1-HSL strongly inhibited bacterial motility and stimulated attachment in the phycosphere. These findings suggest that QS signals enable colonization of the phycosphere by algal symbionts.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3