High-resolution structures of malaria parasite actomyosin and actin filaments

Author:

Vahokoski Juha,Calder Lesley J.,Lopez Andrea J.ORCID,Molloy Justin E.ORCID,Rosenthal Peter B.ORCID,Kursula InariORCID

Abstract

AbstractMalaria is responsible for half a million deaths annually and poses a huge economic burden on the developing world. The mosquito-borne parasites (Plasmodium spp.) that cause the disease depend upon an unconventional actomyosin motor for both gliding motility and host cell invasion. The motor system, often referred to as the glideosome complex, remains to be understood in molecular terms and is an attractive target for new drugs that might block the infection pathway. Here, we present the first high-resolution structure of the actomyosin motor complex from Plasmodium falciparum. Our structure includes the malaria parasite actin filament (PfAct1) complexed with the myosin motor (PfMyoA) and its two associated light-chains. The high-resolution core structure reveals the PfAct1:PfMyoA interface in atomic detail, while at lower-resolution, we visualize the PfMyoA light-chain binding region, including the essential light chain (PfELC) and the myosin tail interacting protein (PfMTIP). Finally, we report a bare PfAct1 filament structure at an improved resolution, which gives new information about the nucleotide-binding site, including the orientation of the ATP/ADP sensor, Ser15, and the presence of a channel, which we propose as a possible phosphate exit path after ATP hydrolysis.Significance statementWe present the first structure of the malaria parasite motor complex; actin 1 (PfAct1) and myosin A (PfMyoA) with its two light chains. We also report a high-resolution structure of filamentous PfAct1 that reveals new atomic details of the ATPase site, including a channel, which may provide an exit route for phosphate and explain why phosphate release is faster in PfAct1 compared to canonical actins. PfAct1 goes through no conformational changes upon PfMyoA binding. Our PfMyoA structure also superimposes with a recent crystal structure of PfMyoA alone, though there are small but important conformational changes at the interface. Our structures serve as an excellent starting point for drug design against malaria, which is one of the most devastating infectious diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3