Genome-Wide Mapping of Cisplatin Damaged Gene Loci

Author:

Qi Luyu,Luo Qun,Xu Yan,Yu Wanchen,Liu Xingkai,Zhang Yanyan,Jia Feifei,Fang Tiantian,Wang Shijun,Li Xiangjun,Zhao Yao,Wang Fuyi

Abstract

AbstractCisplatin is a DNA targeting anticancer drug, yet its damaged gene loci have remained unclear. In the present work, combining affinity isolation and high throughput sequencing, we genome-widely mapped 17729 gene loci containing platination lesions, which mainly function as enzymes, transcription regulators, transporters and kinases, and of which 445 genes account for 71% of potential gene targets for cancer therapy reported in the literature. The most related core signaling pathway, disease and tissue toxicity of 7578 genes with an enrichment fold (EFG) of >12, where EFG refers to the ratio of total read counts of a gene detected in cells with and without cisplatin treatment, are sperm motility, cancer and hepatotoxicity with association P values of < 1×10−22. Among 616 kinase genes damaged by cisplatin, 427 are protein kinases which account for 82% of putative protein kinases, suggesting that cisplatin may act as broad-spectrum protein kinase inhibitor. Western Blot assays verified that expression of 8 important protein kinase genes was significantly reduced due to cisplatin damage. SPAG9 is closely related to 147 of 361 cancer diseases which the cisplatin damaged genes are associated with and was severely damaged by cisplatin. Given SPAG9 abundantly expresses JIP-4, a upstream mediator of protein kinase signaling, in testis, it may be responsible for the high sensitivity of testicular cancer to cisplatin, thus being a potential therapeutic target for precise treatment of testicular cancer. These findings provide novel insights into better understanding in molecular mechanism of anticancer activity and toxicity of cisplatin, more importantly inspire further studies in prioritizing gene targets for precise treatment of cancers.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3