Isolation, identification and functional characterization of cultivable bacteria from Arabian Sea and Bay of Bengal water samples reveals high diversity

Author:

Rajpathak Shriram N.,Patil Yugandhara M.,Banerjee Roumik,Khedkar Asmita M.,Mishra Pawan G.,Paingankar Mandar,Deobagkar Deepti D.

Abstract

AbstractThe oxygen minimum zone of the Arabian Sea (AS) and Bay of Bengal (BOB) is rich in organic matter and is an unusual niche. Bacteria present in the oceanic water play an important role in ecology since they are responsible for decomposing, mineralizing of organic matter and in elemental cycling like nitrogen, sulfur, phosphate. This study focuses on culturing bacteria from oxygen minimum zones (OMZ) and non-OMZ regions and their phylogenetic as well as the functional characterization. Genotypic characterization of the isolates using amplified rDNA based 16SrRNA sequencing grouped them into various phylogenetic groups such as alpha-proteobacteria, gamma-proteobacteria and unaffiliated bacteria. The cultivable bacterial assemblages encountered belonged to the genus Halomonas, Marinobacter, Idiomarina, Pshyctobacter and Pseudoalteromonas. Among the enzymatic activities, carbohydrate utilization activity was most predominant (100%) and microorganisms possessed amylase, cellulase, xylanase and chitinase. A large proportion of these bacteria (60%) were observed to be hydrocarbon consuming and many were resistant to ampicillin, chloramphenicol, kanamycin and streptomycin. The high diversity and high percentage of extracellular hydrolytic enzyme activities along with hydrocarbon degradation activity of the culturable bacteria reflects their important ecological role in oceanic biogeochemical cycling. Further assessment confirmed the presence of nitrogen reduction capability in these cultivable bacteria which highlights their importance in oceanic geochemical cycling.

Publisher

Cold Spring Harbor Laboratory

Reference62 articles.

1. Natural antifouling compound production by microbes associated with marine macroorganisms: A review;Electronic Journal of Biotechnology,2016

2. Bioactive compounds from marine bacteria and fungi;Microbial biotechnology,2010

3. Antiangiogenic, Antimicrobial, and Cytotoxic Potential of Sponge-Associated Bacteria

4. Marine bacteria associated with marine macroorganisms: the potential antimicrobial resources;Annals of Microbiology,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3