Cancer Risk and the Somatic Cell Lineage Tree

Author:

Derényi ImreORCID,Demeter Márton C.,Szöllősi Gergely J.ORCID

Abstract

All the cells of a multicellular organism are the product of cell divisions that trace out a single binary tree, the so-called cell lineage tree. Because cell divisions are accompanied by replication errors, the shape of the cell lineage tree is one of the key determinants of how somatic evolution, which can potentially lead to cancer, proceeds. Cancer initiation usually requires the accumulation of a certain number of driver mutations. By mapping the accumulation of driver mutations into a graph theoretical problem, we show that in leading order of the mutation rate the probability of collecting a given number of driver mutations depends only on the distribution of the lineage lengths (irrespective of any other details of the cell lineage tree), and we derive a simple analytical formula for this probability. Our results are crucial in understanding how natural selection can shape the cell lineage trees of multicellular organisms in order to reduce their lifetime risk of cancer. In particular, our results highlight the significance of the longest cell lineages. Our analytical formula also provides a tool to quantify cancer susceptibility in theoretical models of tissue development and maintenance, as well as for empirical data on cell linage trees.Significance StatementA series of cell divisions starting from a single cell produce and maintain tissues of multicellular organisms. Somatic evolution, including the development of cancer, takes place along the cell lineage tree traced out by these cell divisions. A fundamental question in cancer research is how the lifetime risk of cancer depends on the properties of an arbitrary cell lineage tree. Here we show that for small mutation rates (which is the case in reality) the distribution of the lineage lengths alone determines cancer risk, and that this risk can be described by a simple analytical formula. Our results have far-reaching implications not only for cancer research, but also for evolutionary biology in general.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3