Author:
Katsumura Takafumi,Sato Suguru,Yamashita Kana,Oda Shoji,Gakuhari Takashi,Tanaka Shodai,Fujitani Kazuko,Nishimaki Toshiyuki,Imai Tadashi,Yoshiura Yasutoshi,Takeshima Hirohiko,Hashiguchi Yasuyuki,Mitani Hiroshi,Ogawa Motoyuki,Takeuchi Hideaki,Oota Hiroki
Abstract
AbstractMany organisms exhibit phenotypic plasticity that changes their traits in response to their environment. Although whether or not this plasticity contributes to adaptive evolution is a fundamental question in evolutionary biology, various studies report that natural populations adapt to rapid environmental changes via plasticity, which leads to novel adaptive traits as “triggers.” Namely, phenotypic plasticity has considered allowing an accumulation of genetic mutations to fix the alternative phenotypes induced by nongenetic perturbations that include gene expression noise or epigenetic modification caused by environmental change. However, because the molecular mechanism of phenotypic plasticity is unknown, verification of the process from phenotypic plasticity to genetic fixation remains insufficient. Here we show that decrease in methylated CpG sites leads to loss of plasticity, which triggers genetic fixation of novel traits, in medaka fish (Oryzias latipes). We found that the gut length was correlated with the number of methylated CpG sites upstream of the Plxnb3 gene, which is involved in the developmental process of nerve axons. The medaka, in which the methylated DNA region is deleted by CRISPR/Cas9, showed a loss of plasticity in gut length and a lower survival rate caused by nonoptimal feeding environments. Moreover, standing variation in the promoter region of another gene, Ppp3r1, which is also related to nerve axon development, raised the gene expression and made a longer gut stably in wild medaka groups that lost the gut-length plasticity. Furthermore, our phylogenetic analysis revealed the timing of these evolutionary events, indicating that the loss of phenotypic plasticity by nucleotide substitutions initiates the process of genetic fixation of the novel trait. That is, while phenotypic plasticity plays a role as a buffer of evolution and contributes to environmental adaptation, as previously thought, our molecular data suggest that mutation on CpG site causing the loss of phenotypic plasticity, is the trigger for a generation of novel traits.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献