Activity throughout the lichen phylogeny indicates a focus on regulation of specialized metabolites

Author:

Roze Ludmila V.ORCID,Laivenieks Maris,Gdanetz KristiORCID,Linz John E.ORCID,Fryday Alan M.ORCID,Trail Frances

Abstract

AbstractLichens are complex multi-microorganismal communities that have evolved the ability to share their thalli with a variety of microorganisms. As such, the lichenized fungus becomes a scaffold for a variety of microbes and occasionally insects. Lichens are known to produce a plethora of unique specialized (secondary) compounds that demonstrate biological activities, including antibacterial, antifungal, antiviral, and antioxidant, that may provide protection from harmful microbes. The longevity of lichens and their robustness, despite a close association with diverse microbes, provides an interesting study system to view the role of specialized metabolites in managing a microbial community. The objective of this study was to identify the effects lichens may have on basic functions of fungi in and on the lichens. We tested chemical extracts from lichen species across the phylogenetic tree for their effects on sporulation, hyphal growth and specialized metabolite production, using two well-studied mycotoxigenic fungi (Aspergillus parasiticus (aflatoxin) and Fusarium graminearum (trichothecenes) whose functions are easily observed in culture. By far the most prevalent activity among the 67 lichens we tested were effects on accumulation of fungal specialized metabolites, which appeared in 92% of the lichen species analyzed across the phylogeny, although the lichen extracts were also active against fungal sporulation (31%) and growth (12%). The consistent presence of this regulatory activity for specialized metabolism indicates this is an important aspect of lichen integrity. Interestingly, inhibition of accumulation of products of the aflatoxin biosynthetic pathway was the predominant activity, whereas increased accumulation versus decreased accumulation of the production of trichothecenes were about equal. This suggests multiple mechanisms for addressing fungal processes. We performed microbiome analysis of four lichen species and identified oomycetes as members of the microbiomes. Although a small sample size was used for comparing microbiomes, the lichen species exhibiting lower effects on the test fungi had a higher number of OTUs. Members of the lichen community may manipulate specialized metabolism of the essential and transient fungal members and thus attenuate negative interactions with the incumbent fungi or, alternatively, may support the production of compounds by beneficial fungal partners. The ability to control the microbiome by specialized metabolites as opposed to controlling by reducing sporulation of growth, can be effective, discerning, and energetically thrifty, allowing the microbiome members to be controlled without being invasive. Elucidating the role of specialized metabolites in the mechanisms underlying lichen assembly and function has important implications for understanding not only lichen community assembly but for revealing the fundamental processes in microbiota in general.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3