A composite method to infer drug resistance with mixed genomic data

Author:

Datta GargiORCID,Hasan Nabeeh A,Strong Michael,Leach Sonia M

Abstract

Background: The increasing incidence of drug resistance in tuberculosis and other infectious diseases poses an escalating cause for concern, emphasizing the urgent need to devise robust computational and molecular methods identify drug resistant strains. Although machine learning-based approaches using whole-genome sequence data can facilitate the inference of drug resistance, current implementations do not optimally take advantage of information in public databases and are not robust for small sample sizes and mixed attribute types. Results: In this paper we introduce the Composite MetaDistance method, an approach for feature selection and classification of high-dimensional, unbalanced datasets with mixed attribute features from various data sources. We introduce a mixed-attribute, multi-view distance function to calculate distances between samples, with optimal handling of nominal features and different feature views. We also introduce a novel feature set for drug resistance prediction in Mycobacterium tuberculosis, using data from diverse sources. We compare the performance of Composite MetaDistance to multiple machine learning algorithms for Mycobacterium tuberculosis drug resistance prediction for three drugs. Composite MetaDistance consistently outperforms existing algorithms for small sample training sets, and performs as well as other algorithms for training sets with larger sample sizes. Conclusion: The feature set formulation introduced in this paper is utilizes mutational and publicly available information for each gene, and is much richer than ever devised previously. The prediction algorithm, Composite MetaDistance, is sample size agnostic and robust especially given small sample sizes. Proper handling of nominal features improves performance even with a very small number of nominal features. We expect Composite MetaDistance to be even more robust for datasets with a higher percentage of nominal features. The algorithm is application independent and can be used for any mixed attribute dataset.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3