One in seven pathogenic variants can be challenging to detect by NGS: An analysis of 450,000 patients with implications for clinical sensitivity and genetic test implementation

Author:

Lincoln Stephen E.ORCID,Hambuch Tina,Zook Justin M.ORCID,Bristow Sara L.,Hatchell Kathryn,Truty RebeccaORCID,Kennemer Michael,Shirts Brian H.,Fellowes Andrew,Chowdhury Shimul,Klee Eric W.,Mahamdallie Shazia,Cleveland Megan H.ORCID,Vallone Peter M.ORCID,Ding Yan,Seal Sheila,DeSilva Wasanthi,Tomson Farol L.,Huang Catherine,Garlick Russell K.,Rahman Nazneen,Salit Marc,Kingsmore Stephen F.ORCID,Ferber Matthew J.,Aradhya Swaroop,Nussbaum Robert L.

Abstract

ABSTRACTPurposeTo evaluate the impact of technically challenging variants on the implementation, validation, and diagnostic yield of commonly used clinical genetic tests. Such variants include large indels, small CNVs, complex alterations, and variants in low-complexity or segmentally duplicated regions.MethodsAn interlaboratory pilot study used novel synthetic specimens to assess detection of challenging variant types by various NGS-based workflows. One well-performing workflow was further validated and used in clinician-ordered testing of more than 450,000 patients.ResultsIn the interlaboratory study, only two of 13 challenging variants were detected by all 10 workflows, and just three workflows detected all 13. Limitations were also observed among 11 less-challenging indels. In clinical testing, 21.6% of patients carried one or more pathogenic variants, of which 13.8% (17,561) were classified as technically challenging. These variants were of diverse types, affecting 556 of 1,217 genes across hereditary cancer, cardiovascular, neurological, pediatric, reproductive carrier screening, and other indicated tests.ConclusionThe analytic and clinical sensitivity of NGS workflows can vary considerably, particularly for prevalent, technically challenging variants. This can have important implications for the design and validation of tests (by laboratories) and the selection of tests (by clinicians) for a wide range of clinical indications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3