Abstract
AbstractIdentifying predictors of cognitive ability and brain structure in later life is an important step towards understanding the mechanisms leading to cognitive decline and dementia. This study used ultra-performance liquid chromatography mass spectrometry (UPLC-MS) and nuclear magnetic resonance (NMR) to measure targeted and untargeted metabolites, mainly lipids and lipoproteins, in ∼600 members of the Lothian Birth Cohort 1936 (LBC1936) at aged ∼73 years. Penalized regression models (LASSO) were then used to identify sets of metabolites that predict variation in general cognitive ability and structural brain variables. UPLC-MS-POS measured lipids, together predicted 19% of the variance in total brain volume and 17% of the variance in both grey matter and normal appearing white matter volumes. Multiple subclasses of lipids were included in the predictor, but the best performing lipid was the sphingomyelin SM(d18:2/14:0) which occurred in 100% of iterations of all three significant models. No metabolite set predicted cognitive ability, or white matter hyperintensities or connectivity. Future studies should concentrate on identifying specific lipids as potential cognitive and brain-structural biomarkers in older individuals.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献