Soluble corn fiber reduces ovalbumin-induced sinonasal inflammation via the gut microbiota-airway axis

Author:

Jaramillo Sierra A.,Borsom Emily M.,Orsini Gabrielle M.,Kask Oliver,Lee Keehoon,Hirsch Allyson H.,Settles Erik,Shi Xiaojian,Gu Haiwei,Koppisch Andrew T.,Bokulich Nicholas A.,Caporaso J. GregoryORCID,Cope Emily K.

Abstract

ABSTRACTAsthma is a chronic airway inflammatory disease that affects approximately 300 million people worldwide, causing a substantial healthcare burden. Although there is a large degree of heterogeneity in the inflammatory response of asthmatics, a subset of patients are characterized by type-2 inflammation, which is in part mediated by TH2 cells in both the upper and lower airways. Asthma prevalence is increased in low-socioeconomic-status populations, where disparities in health behavior exist, including a shift toward a western diet characterized by low dietary fiber. Gut microbes metabolize fiber into short chain fatty acids that can reduce type-2 inflammation in peripheral organs, such as the airways. We hypothesized that soluble fiber can reduce ovalbumin (OVA)-induced upper airway inflammation in the context of the unified airway hypothesis, in mice maintained on ingredient-matched western (WD) and control diets (CD) through production of short chain fatty acids. Our results show that soluble fiber reduces IL-4 and IL-13 gene expression (p<0.05, Mann Whitney) in the sinonasal cavity of CD-fed mice, but this effect was lost in WD-fed mice. This loss of protection in WD-fed mice parallels compositional changes of the cecal and fecal microbiota. Mice fed a soluble fiber supplement while being maintained on a WD had altered microbial communities characterized by lower abundance of fiber fermentering bacteria. This work can be used to develop effective microbiome-based therapeutics as a low-cost method to reduce asthma morbidity.IMPORTANCEPrevious research has supported that western-style diets, typically high-fat and low-fiber, are associated with changes in the gut microbiome and increased inflammation. Western diets are accessible and prominent in low-socioeconomic-status populations, where asthma rates are highest; however, there has yet to be a low-cost asthma therapeutic. For the first time, we investigated whether supplementation with a physiologically relevant quantity of soluble corn fiber can reduce allergic airway inflammation. Our study supports that soluble corn fiber supplementation is associated with compositional shifts of the gut microbiota and reduced airway inflammation, promoting the use of fiber as a low-cost microbiome modifying therapy to reduce asthma-associated inflammation. However, soluble corn fiber in conjunction with a western diet resulted in an alternate gut microbiome composition and loss of protection against allergic airway inflammation. These findings further support the importance of the gut microbiota in host health.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3