In Silico Driven Prediction of MAPK14 Off-Targets Reveals Unrelated Proteins with High Accuracy

Author:

Kaiser FlorianORCID,Plach Maximilian G.,Leberecht ChristophORCID,Schubert Thomas,Haupt V. JoachimORCID

Abstract

During the discovery and development of new drugs, candidates with undesired and potentially harmful side-effects can arise at all stages, which poses significant scientific and economic risks. Most of such phenotypic side-effects can be attributed to binding of the drug candidate to unintended proteins, so-called off-targets. The early identification of potential off-targets is therefore of utmost importance to mitigate any downstream risks. We showcase how the combination of knowledge-based in silico off-target screening and state-of-the-art biophysics can be applied to rapidly identify off-targets for a MAPK14 inhibitor. Out of 13 predicted off-targets, six proteins were confirmed to interact with the inhibitor in vitro, which translates to an exceptional hit rate of 46%. For two proteins, affinities in the lower micromolar range were obtained: The kinase IRE1 and the Hematopoietic Prostaglandin D Synthase, which is entirely unrelated to MAPK14 and is involved in different cell-regulatory processes. The whole off-target identification/validation pipeline can be completed as fast as within two months, excluding delivery times of proteins. These results emphasize how computational off-target screening in combination with MicroScale Thermophoresis can effectively reduce downstream development risks in a very competitive time frame and at low cost.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3