Connexin 46 and connexin 50 gap junction channel open stability and unitary conductance are shaped by structural and dynamic features of their N-terminal domains

Author:

Yue Benny,Haddad Bassam G.,Khan Umair,Chen Honghong,Atalla Mena,Zhang Ze,Zuckerman Daniel M.ORCID,Reichow Steve L.ORCID,Bai DonglinORCID

Abstract

AbstractThe connexins form intercellular communication channels, known as gap junctions (GJs), that facilitate diverse physiological roles in vertebrate species, ranging from electrical coupling and long-range chemical signaling, to coordinating development and nutrient exchange. GJs formed by different connexins are expressed throughout the body and harbor unique channel properties that have not been fully defined mechanistically. Recent structural studies have implicated the amino-terminal (NT) domain as contributing to isoform-specific functional differences that exist between the lens connexins, Cx50 and Cx46. To better understand the structural and functional differences in the two closely related, yet functionally distinct GJs, we constructed models corresponding to CryoEM-based structures of the wildtype Cx50 and Cx46 GJs, NT domain swapped chimeras (Cx46-50NT and Cx50-46NT), and point variants at the 9th residue (Cx46-R9N and Cx50-N9R) for comparative MD simulation and electrophysiology studies. All of these constructs formed functional GJ channels, except Cx46-50NT, which correlated with increased dynamical behavior (instability) of the NT domain observed by MD simulation. Single channel conductance (γj) also correlated well with free-energy landscapes predicted by MD, where γj of Cx46-R9N was increased from Cx46 and the γjs of Cx50-46NT and Cx50-N9R was decreased from Cx50, but to a surprisingly greater degree. Additionally, we observed significant effects on transjunctional voltage-dependent gating (Vj-gating) and open-state dwell times induced by the designed NT domain variants. Together, these studies indicate that the NT domains of Cx46 and Cx50 play an important role in defining channel properties related to open-state stability and single channel conductance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3