Author:
Cao Ke,Peng Zhen,Zhao Xing,Li Yong,Liu Kuozhan,Arus Pere,Zhu Gengrui,Deng Shuhan,Fang Weichao,Chen Changwen,Wang Xinwei,Wu Jinlong,Fei Zhangjun,Wang Lirong
Abstract
AbstractAs a foundation to understand the molecular mechanisms of peach evolution and high-altitude adaptation, we performed de novo genome assembling of four wild relatives of P. persica, P. mira, P. kansuensis, P. davidiana and P. ferganensis. Through comparative genomic analysis, abundant genetic variations were identified in four wild species when compared to P. persica. Among them, a deletion, located at the promoter of Prupe.2G053600 in P. kansuensis, was validated to regulate the resistance to nematode. Next, a pan-genome was constructed which comprised 15,216 core gene families among four wild peaches and P. perisca. We identified the expanded and contracted gene families in different species and investigated their roles during peach evolution. Our results indicated that P. mira was the primitive ancestor of cultivated peach, and peach evolution was non-linear and a cross event might have occurred between P. mira and P. dulcis during the process. Combined with the selective sweeps identified using accessions of P. mira originating from different altitude regions, we proposed that nitrogen recovery was essential for high-altitude adaptation of P. mira through increasing its resistance to low temperature. The pan-genome constructed in our study provides a valuable resource for developing elite cultivars, studying the peach evolution, and characterizing the high-altitude adaptation in perennial crops.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献