Unpacking the eagle collision risk model: practical guidance for wind energy

Author:

Evans Michael J.ORCID,Sporer Misti,Erickson Wally,Page Joy

Abstract

ABSTRACTClimate change is one of the greatest threats facing biodiversity, and solutions to reduce carbon emissions are needed to conserve species. Renewable energies are a prominent means to achieve this goal, but the potential for direct harm to wildlife has raised concerns as these technologies proliferate. To protect biodiversity, approaches that facilitate renewable energy development while protecting species are needed. In the United States wind energy developers must obtain a permit for any Bald or Golden eagles that might be killed at a facility. The U.S. Fish & Wildlife Service estimates fatalities using a Bayesian modeling framework, which combines pre-construction eagle surveys with prior information. The ways in which prior information is incorporated and how pre-construction monitoring affects model outcomes can be unclear to regulated entities and other stakeholders, creating uncertainty in the permitting process and retarding both the build-out of renewable energy and conservation measures for eagles. We conducted a simulation study quantifying the differences in predicted eagle fatalities obtained by incorporating prior information and using only site-specific survey data across a range of scenarios, evaluating the impact of survey effort on the magnitude of this effect. We identified predictable relationships between survey effort, eagle activity, facility size and discrepancies between estimates. We also translated these patterns into real-world financial costs, illustrating the interaction between pre-construction surveys, fatality estimates, and compensatory mitigation obligations in determining permit timing and expense.

Publisher

Cold Spring Harbor Laboratory

Reference31 articles.

1. Impacts to wildlife of wind energy siting and operation in the United States;Issues in Ecology,2019

2. Quantifying the value of monitoring species in multi-species, multi-threat systems;Methods in Ecology and Evolution,2018

3. Bald and Golden Eagle Protection Act. 1940. United States Congress.

4. Predicting eagle fatalities at wind facilities;Journal of Wildlife Management,2016

5. A spatially explicit model to predict the relative risk of Golden Eagle electrocutions in the Northwestern Plains, USA;Journal of Raptor Research,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3