Decoding 3D spatial location across saccades in human visual cortex

Author:

Zhang XiaoliORCID,Jones Christopher MORCID,Golomb Julie DORCID

Abstract

AbstractVisual signals are initially processed as two-dimensional images on our retina, but we live in a 3D world. Depth information needs to be reconstructed from the 2D retinal images, using cues such as binocular disparity. But in daily life, we also make frequent, rapid eye movements, which alter the 2D retinal input. How do we achieve stable 3D perception across saccades? Using fMRI pattern analysis, we investigated how 3D spatial representations in human visual cortex are influenced by saccades. Participants viewed stimuli in four possible 3D locations, defined by 2D vertical position (above or below screen center) and depth position (in front of or behind central screen plane). We compared the amount of 2D and depth information in visual cortical regions during no-saccade blocks (stationary fixation) with that during saccade blocks (series of guided saccades). On no-saccade blocks, decoding of stimulus location was highly dependent on fixation position: in later visual areas we could decode both vertical and depth information across blocks that shared the same fixation position (as previously reported), but little vertical or depth information could be decoded across blocks with different fixation positions. Strikingly, the neural similarity patterns appeared tolerant to changes in fixation position during saccade blocks: despite the saccade-induced retinal and fixation changes, we could reliably decode both vertical and depth information. The findings suggest that representations of 3D spatial locations may become more tolerant of fixation positions during dynamic saccades, perhaps due to active remapping which may encourage more stable representations of the world.SignificanceThis study investigates two fundamental challenges for visual perception: how to preserve spatial information across frequent eye movements, and how to integrate binocular depth location with 2D location to form coherent 3D percepts. Aspects of these challenges have been studied in isolation, but surprisingly no studies have investigated them jointly to ask how 3D spatial representations in human visual cortex are influenced by saccades. Our fMRI pattern analysis findings highlight a potentially critical role of active, dynamic saccades on stabilizing 3D spatial representations in the brain, revealing that representations of 3D space may be modulated by eye position during sustained fixation, but could become tolerant of changes in eye position during active, dynamic saccades.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3