Spatio-Temporal Correlates of Gene Expression and Cortical Morphology across Life Course and Aging

Author:

Qiu Anqi,Zhang Han,Kennedy Brian K.,Lee Annie

Abstract

AbstractEvidence from independent neuroimaging and genetic studies supports the concept that brain aging mirrors development. However, it is unclear whether mechanisms linking brain development and aging provide new insights to delay aging and potentially reverse it. This study determined biological mechanisms and phenotypic traits underpinning brain alterations across the life course and in aging by examining spatio-temporal correlations between gene expression and cortical volumes (n=3391) derived from the life course dataset (3-82 years) and the aging dataset (55-82 years). We revealed that a large proportion of genes whose expression was associated with cortical volume across the life course were in astrocytes. These genes, which showed up-regulation during development and down-regulation during aging, contributed to fundamental homeostatic functions of astrocytes crucial, in turn, for neuronal functions. Included among these genes were those encoding components of cAMP and Ras signal pathways, as well as retrograde endocannabinoid signaling. Genes associated with cortical volumes in the aging dataset were also enriched for the sphingolipid signaling pathway, renin-angiotensin system (RAS), proteasome, and TGF-beta signaling pathway, which is linked to the senescence-associated secretory phenotype. Neuroticism, drinking, and smoking were the common phenotypic traits in the life course and aging, while memory was the unique phenotype associated with aging. These findings provide biological mechanisms and phenotypic traits mirroring development and aging as well as unique to aging.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey on spatio-temporal data mining;Materials Today: Proceedings;2021-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3