Abstract
AbstractLipid miscibility phase separation has long been considered to be a central element of cell membrane organization. More recently, protein condensation phase transitions, into three-dimensional droplets or in two-dimensional lattices on membrane surfaces, have emerged as another important organizational principle within cells. Here, we reconstitute the LAT:Grb2:SOS protein condensation on the surface of giant unilamellar vesicles capable of undergoing lipid phase separations. Our results indicate that assembly of the protein condensate on the membrane surface can drive lipid phase separation. This phase transition occurs isothermally and is governed by tyrosine phosphorylation on LAT. Furthermore, we observe that the induced lipid phase separation drives localization of the SOS substrate, K-Ras, into the LAT:Grb2:SOS protein condensate.Statement of SignificanceProtein condensation phase transitions are emerging as an important organizing principles in cells. One such condensate plays a key role in T cell receptor signaling. Immediately after receptor activation, multivalent phosphorylation of the adaptor protein LAT at the plasma membrane leads to networked assembly of a number of signaling proteins into a two-dimensional condensate on the membrane surface. In this study, we demonstrate that LAT condensates in reconstituted vesicles are sufficient to drive lipid phase separation. This lipid reorganization drives another key downstream signaling molecule, Ras, into the LAT condensates. These results show that the LAT condensation phase transition, which is actively controlled by phosphorylation reactions, extends its influence to control lipid phase separation in the underlying membrane.
Publisher
Cold Spring Harbor Laboratory