A three-dimensional musculoskeletal model of the dog

Author:

Stark HeikoORCID,Fischer Martin S.,Hunt AlexanderORCID,Young FletcherORCID,Quinn Roger,Andrada EmanuelORCID

Abstract

AbstractDogs are an interesting object of investigation because of the wide range of body size, body mass, and physique. In the last several years, the number of clinical and biomechanical studies on dog locomotion has increased. However, the relationship between body structure and joint load during locomotion, as well as between joint load and degenerative diseases of the locomotor system (e.g. dysplasia), are not sufficiently understood. In vivo measurements/records of joint forces and loads or deep/small muscles are complex, invasive, and sometimes ethically questionable. The use of detailed musculoskeletal models may help in filling that knowledge gap. We describe here the methods we used to create a detailed musculoskeletal model with 84 degrees of freedom and 134 muscles. Our model has three key-features: Three-dimensionality, scalability, and modularity. We tested the validity of the model by identifying forelimb muscle synergies of a beagle at walk. We used inverse dynamics and static optimization to estimate muscle activations based on experimental data. We identified three muscle synergy groups by using hierarchical clustering. Predicted activation patterns exhibited good agreement with experimental data for most of the forelimb muscles. We expect that our model will speed up the analysis of how body size, physique, agility, and disease influence joint neuronal control and loading in dog locomotion.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3