Author:
Zeng Zhenguo,Chen Weiguo,Moshensky Alexander,Khan Raheel,Crotty-Alexander Laura,Ware Lorraine B.,Aldaz C. Marcelo,Jacobson Jeffrey R.,Dudek Steven M.,Natarajan Viswanathan,Machado Roberto F.,Singla Sunit
Abstract
AbstractRATIONALEA history of chronic cigarette smoking is known to increase risk for ARDS, but the corresponding risks associated with chronic e-cigarette use are largely unknown. The chromosomal fragile site gene, WWOX, is highly susceptible to genotoxic stress from environmental exposures, and thus an interesting candidate gene for the study of exposure-related lung disease.METHODS AND RESULTSLungs harvested from current versus former/never smokers exhibited a 47% decrease in WWOX mRNA levels. Exposure to nicotine-containing e-cigarette vapor resulted in an average 57% decrease in WWOX mRNA levels relative to vehicle treated controls. In separate studies, endothelial (EC)-specific WWOX KO versus wild type mice were examined under ARDS-producing conditions. EC WWOX KO mice exhibited significantly greater levels of vascular leak and histologic lung injury. ECs were isolated from digested lungs of untreated EC WWOX KO mice using sorting by flow cytometry for CD31+CD45- cells. These were grown in culture, confirmed to be WWOX-deficient by RT-PCR and Western blotting, and analyzed by electric cell impedance sensing (ECIS) as well as a FITC dextran transwell assay for their barrier properties during MRSA or LPS exposure. WWOX KO ECs demonstrated significantly greater declines in barrier function relative to wild type cells during either MRSA or LPS treatment as measured by both ECIS and the transwell assay.CONCLUSIONThe increased risk for ARDS observed in chronic smokers may be mechanistically linked, at least in part, to lung WWOX downregulation, and this phenomenon may also manifest in the near future in chronic users of e-cigarettes.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献