Abstract
AbstractNucleus deformation has been shown to play a key role in cell mechanotransduction and migration. Therefore, it is of wide interest to accurately characterize nucleus mechanical behavior. In this study we present the first computational investigation of the in-situ deformation of a heterogeneous cell nucleus. A novel methodology is developed to accurately reconstruct a three-dimensional finite element spatially heterogeneous model of a cell nucleus from confocal microscopy z-stack images of nuclei stained for nucleus DNA. The relationship between spatially heterogeneous distributions microscopic imaging-derived greyscale values, shear stiffness and resultant shear strain is explored through the incorporation of the reconstructed heterogeneous nucleus into a model of a chondrocyte embedded in a PCM and cartilage ECM. Externally applied shear deformation of the ECM is simulated and computed intra-nuclear strain distributions are directly compared to corresponding experimentally measured distributions. Simulations suggest that the nucleus is highly heterogeneous in terms of its mechanical behaviour, with a sigmoidal relationship between experimentally measure greyscale values and corresponding local shear moduli (μn). Three distinct phases are identified within the nucleus: a low stiffness phase (0.17 kPa ≤ μn ≤ 0.63 kPa) corresponding to mRNA rich interchromatin regions; an intermediate stiffness phase (1.48 kPa ≤ μn ≤ 2.7 kPa) corresponding to euchromatin; a high stiffness phase (3.58 kPa ≤ μn ≤ 4.0 kPa) corresponding to heterochromatin. Our simulations indicate that disruption of the nucleus envelope associated with lamin-A/C depletion significantly increases nucleus strain in regions of low DNA concentration. A phenotypic shift of chondrocytes to fibroblast-like cells, a signature for osteoarthritic cartilage, results in a 35% increase in peak nucleus strain compared to control. The findings of this study may have broad implications for the current understanding of the role of nucleus deformation in cell mechanotransduction.
Publisher
Cold Spring Harbor Laboratory