Under pressure: phenotypic divergence and convergence associated with microhabitat adaptations in Triatominae

Author:

Abad-Franch FernandoORCID,Monteiro Fernando A.,Pavan Márcio G.ORCID,Patterson James S.,Bargues M. DoloresORCID,Zuriaga M. Ángeles,Aguilar Marcelo,Beard Charles B.,Mas-Coma SantiagoORCID,Miles Michael A.ORCID

Abstract

AbstractBackgroundTriatomine bugs, the vectors of Chagas disease, associate with vertebrate hosts in highly diverse ecotopes. When these blood-sucking bugs adapt to new microhabitats, their phenotypes may change. Although understanding phenotypic variation is key to the study of adaptive evolution and central to phenotype-based taxonomy, the drivers of phenotypic change and diversity in triatomines remain poorly understood.Methods/FindingsWe combined a detailed phenotypic appraisal (including morphology and morphometrics) with mitochondrial cytb and nuclear ITS2 DNA-sequence analyses to study Rhodnius ecuadoriensis populations from across the species’ range. We found three major, naked-eye phenotypic variants. Southern-Andean bugs (SW Ecuador/NW Peru) from house and vertebrate-nest microhabitats are typical, light-colored, small bugs with short heads/wings. Northern-Andean bugs (W Ecuador wet-forest palms) are dark, large bugs with long heads/wings. Finally, northern-lowland bugs (coastal Ecuador dry-forest palms) are light-colored and medium-sized. Wing and (size-free) head shapes are similar across Ecuadorian populations, regardless of habitat or naked-eye phenotype, but distinct in Peruvian bugs. Bayesian phylogenetic and multispecies-coalescent DNA-sequence analyses strongly suggest that Ecuadorian and Peruvian populations are two independently-evolving lineages, with little within-lineage structuring/differentiation.ConclusionsWe report sharp naked-eye phenotypic divergence of genetically similar Ecuadorian R. ecuadoriensis (house/nest southern-Andean vs. palm-dwelling northern bugs; and palm-dwelling Andean vs. lowland); and sharp naked-eye phenotypic similarity of typical, yet genetically distinct, southern-Andean bugs from house and nest (but not palm) microhabitats (SW Ecuador vs. NW Peru). This remarkable phenotypic diversity within a single nominal species likely stems from microhabitat adaptations possibly involving predator-driven selective pressure (yielding substrate-matching camouflage coloration) and a shift from palm-crown to vertebrate-nest microhabitats (yielding smaller bodies and shorter heads and wings). These findings shed new light on the origins of phenotypic diversity in triatomines, warn against excess reliance on phenotype-based triatomine-bug taxonomy, and confirm the Triatominae as an informative model-system for the study of phenotypic change under ecological pressure.Author summaryTriatomine bugs feed on the blood of vertebrates including humans and transmit the parasite that causes Chagas disease. The bugs, of which 150+ species are known, are highly diverse in size, shape, and color. Some species look so similar that they are commonly confused, whereas a few same-species populations look so different that they were thought to be separate species. Despite the crucial role of naked-eye phenotypes in triatomine-bug identification and classification (which are essential for vector control-surveillance), the origins of this variation remain unclear. Here, we describe a striking case of phenotypic divergence, with genetically similar bugs looking very different from one another, and phenotypic convergence, with bugs from two genetically distinct populations (likely on their way to speciation) looking very similar – and all within a single nominal species, Rhodnius ecuadoriensis. Phenotypically divergent populations occupy different ecological regions (wet vs. dry) and microhabitats (palm-crowns vs. vertebrate nests), whereas convergent populations occupy man-made and nest (but not palm) microhabitats. These findings suggest that triatomines can ‘respond’ to ecological novelty by changing their external, naked-eye phenotypes as they adapt to new microhabitats. We therefore warn that phenotypic traits such as overall size or color may confound triatomine-bug species identification and classification.

Publisher

Cold Spring Harbor Laboratory

Reference92 articles.

1. Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas’ disease;Bull Am Mus Nat Hist,1979

2. Abad-Franch F , Gurgel-Gonçalves R. The ecology and natural history of wild Triatominae in the Americas. In: Guarneri AA , Lorenzo MG , editors. Entomology in focus. Triatominae: the biology of Chagas disease vectors. Berlin: Springer Nature; 2020, in press.

3. Control of Chagas disease: second report of the WHO Expert Committee;World Health Organization;WHO Tech Rep Ser,2002

4. Triatominae as a model of morphological plasticity under ecological pressure

5. Molecular tools and triatomine systematics: a public health perspective

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3