An Exploration of Impact of COVID 19 on mental health -Analysis of tweets using Natural Language Processing techniques

Author:

Sengupta Sohini,Mugde Sareeta,Sharma Garima

Abstract

AbstractTwitter is one of the world’s biggest social media platforms for hosting abundant number of user-generated posts. It is considered as a gold mine of data. Majority of the tweets are public and thereby pullable unlike other social media platforms. In this paper we are analyzing the topics related to mental health that are recently (June, 2020) been discussed on Twitter. Also amidst the on-going pandemic, we are going to find out if covid-19 emerges as one of the factors impacting mental health. Further we are going to do an overall sentiment analysis to better understand the emotions of users.Executive SummeryNovel Corona virus’s spread and its impact on various aspects of national and individual’s well-being has been at the center of lot of discussions across micro-blogging sites and various social media platforms ever since it commenced in December 2019. Users are voicing their opinions on several topics related to covid-19. Social distancing as prescribed by Government and Local Administration We all are aware that the Novel Corona virus has significantly affected our physical health; however the current social distancing norms are taking a toll on the psychological well-being of individuals. The research paper presents a two-phased analysis of most recent 2000 tweets related to mental health pulled out twice over a span of one month on 28 June 2020 and 28 July2020 respectively, thereby analyzing 4000 tweets in total. The second phase analysis was conducted exactly after a gap of one month to validate the results generated by the first analysis. The intention is to analyze to what extent people have discussed about mental health in the past few months based on the information disseminated on Twitter. Data was extracted using Twitter’s search application programming interface (API) and Python’s tweepy library. A predefined keyword like ‘mental health’ was given to find out if Covid-19 emerges as a reason for the same. Several natural language processing (NLP) techniques like tokenization, removing URL and stop words, stemming and lemmatization were used to pre-process the text data and make it ready for analysis. These collected tweets were analyzed using word frequencies of single and double words (unigram, bigram). A very unique feature of this analysis includes a network diagram that shows interconnections between the set of most common words used in to its and the connections (if any) are represented through links. Topic modeling technique in NLP visualizes the top concerns of tweeters through a word cloud. At present we have many methods to do topic modeling. In this paper we are using the Latent Dirichlet Allocation (LDA) method which is a probabilistic approach of modeling given by Prof David H.B in 2003. This model deals with distribution of topics to tweets and allocation of those topics to documents and words to topics. Finally a sentiment analysis is done using text mining techniques to analyze the sentiment of the tweets in the form of positive, negative and neutral.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3