Development and Evaluation of MADDIE: Method to Acquire Delivery Date Information from Electronic Health Records

Author:

Canelón Silvia P.ORCID,Burris Heather H.ORCID,Levine Lisa D.,Boland Mary ReginaORCID

Abstract

AbstractObjectiveTo develop an algorithm that infers patient delivery dates (PDDs) and delivery-specific details from Electronic Health Records (EHRs) with high accuracy.Materials and MethodsWe obtained EHR data from 1,060,100 female patients treated at Penn Medicine hospitals or outpatient clinics between 2010-2017. We developed an algorithm called MADDIE: Method to Acquire Delivery Date Information from Electronic Health Records that infers a PDD for distinct deliveries based on EHR encounter dates assigned a delivery code, the frequency of code usage, and the time differential between code assignments. We validated MADDIE’s PDDs against a birth log independently maintained by the Department of Obstetrics and Gynecology.ResultsMADDIE identified 50,560 patients having 63,334 distinct deliveries. MADDIE was 98.6% accurate (F1-score 92.1%) when compared to the birth log. The PDD was on average 0.68 days earlier than the true delivery date for patients with only one delivery (± 1.43 days) and 0.52 days earlier for patients with more than one delivery episode (± 1.11 days).DiscussionMADDIE is the first algorithm to successfully infer PDD information using only structured delivery codes and identify multiple deliveries per patient. MADDIE is also the first to validate the accuracy of the PDD using an external gold standard of known delivery dates as opposed to manual chart review of a sample.ConclusionMADDIE infers delivery dates and delivery-specific details from the EHR with high accuracy and relies only on structured EHR elements while harnessing temporal information and the frequency of code usage to identify accurate PDDs.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3