Generalizing HMMs to Continuous Time for Fast Kinetics: Hidden Markov Jump Processes

Author:

Kilic ZelihaORCID,Sgouralis Ioannis,Pressé Steve

Abstract

AbstractThe hidden Markov model (HMM) is a framework for time series analysis widely applied to single molecule experiments. It has traditionally been used to interpret signals generated by systems, such as single molecules, evolving in a discrete state space observed at discrete time levels dictated by the data acquisition rate. Within the HMM framework, originally developed for applications outside the Natural Sciences, such as speech recognition, transitions between states, such as molecular conformational states, are modeled as occurring at the end of each data acquisition period and are described using transition probabilities. Yet, while measurements are often performed at discrete time levels in the Natural Sciences, physical systems evolve in continuous time according to transition rates. It then follows that the modeling assumptions underlying the HMM are justified if the transition rates of a physical process from state to state are small as compared to the data acquisition rate. In other words, HMMs apply to slow kinetics. The problem is, as the transition rates are unknown in principle, it is unclear, a priori, whether the HMM applies to a particular system. For this reason, we must generalize HMMs for physical systems, such as single molecules, as these switch between discrete states in continuous time. We do so by exploiting recent mathematical tools developed in the context of inferring Markov jump processes and propose the hidden Markov jump process (HMJP). We explicitly show in what limit the HMJP reduces to the HMM. Resolving the discrete time discrepancy of the HMM has clear implications: we no longer need to assume that processes, such as molecular events, must occur on timescales slower than data acquisition and can learn transition rates even if these are on the same timescale or otherwise exceed data acquisition rates.

Publisher

Cold Spring Harbor Laboratory

Reference104 articles.

1. The annals of mathematical statistics;Statistical inference for probabilistic functions of finite state markov chains,1966

2. A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains;The annals of mathematical statistics,1970

3. Probabilistic functions of finite state markov chains;The Annals of Mathematical Statistics,1969

4. A tutorial on hidden Markov models and selected applications in speech recognition

5. An introduction to the application of the theory of probabilistic functions of a markov process to automatic speech recognition;Bell System Technical Journal,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3