Recurrent Neural Network-based Acute Concussion Classifier using Raw Resting State EEG Data

Author:

Thanjavur KarunORCID,Babul ArifORCID,Foran Brandon,Bielecki Maya,Gilchrist Adam,Hristopulos Dionissios T.ORCID,Brucar Leyla R.,Virji-Babul NazninORCID

Abstract

ABSTRACTConcussion is a global health concern. Despite its high prevalence, a sound understanding of the mechanisms underlying this type of diffuse brain injury remains elusive. It is, however, well established that concussions cause significant functional deficits; that children and youths are disproportionately affected and have longer recovery time than adults; and recovering individuals are more prone to suffer additional concussions, with each successive injury increasing the risk of long term neurological and mental health complications. Currently, concussion management faces two significant challenges: there are no objective, clinically accepted, brain-based approaches for determining (i) whether an athlete has suffered a concussion, and (ii) when the athlete has recovered. Diagnosis is based on clinical testing and self-reporting of symptoms and their severity. Self-reporting is highly subjective and symptoms only indirectly reflect the underlying brain injury. Here, we introduce a deep learning Long Short Term Memory (LSTM)-based recurrent neural network that is able to distinguish between healthy and acute post-concussed adolescent athletes using only a short (i.e. 90 seconds long) sample of resting state EEG data as input. The athletes were neither required to perform a specific task nor subjected to a stimulus during data collection, and the acquired EEG data was neither filtered, cleaned of artefacts, nor subjected to explicit feature extraction. The LSTM network was trained and tested on data from 27 male, adolescent athletes with sports related concussion, bench marked against 35 healthy, adolescent athletes. During rigorous testing, the classifier consistently identified concussions with an accuracy of >90% and its ensemble-median Area Under the Curve (AUC) corresponds to 0.971. This is the first instance of a high-performing classifier that relies only on easy-to-acquire resting state EEG data. It represents a key step towards the development of an easy-to-use, brain-based, automatic classification of concussion at an individual level.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3