Homologous recombination and transposon propagation shapes the population structure of an organism from the deep subsurface with minimal metabolism

Author:

Probst Alexander J,Banfield Jillian F.

Abstract

ABSTRACTDPANN archaea are primarily known based on genomes from metagenomes and single cells. We reconstructed a complete population genome for Candidatus “Forterrea”, a Diapherotrite with a predicted symbiotic lifestyle probably centered around nucleotide metabolism and RuBisCO. Genome-wide analysis of sequence variation provided insights into the processes that shape its population structure in the deep subsurface. The genome contains many transposons, yet reconstruction of a complete genome from a short-read insert dataset was possible because most occurred only in some individuals. Accuracy of the final reconstruction could be verified because the genome displays the pattern of cumulative GC skew known for some archaea but more typically associated with bacteria. Sequence variation is highly localized, and most pronounced around transposons and relatively close to the origin of replication. Patterns of variation are best explained by homologous recombination, a process previously not described for DPANN archaea.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3