Author:
Kamrad Stephan,Grossbach Jan,Rodríguez-López Maria,Townsend StJohn,Mülleder Michael,Cappelletti Valentina,Stojanovski Gorjan,Picotti Paola,Beyer Andreas,Ralser Markus,Bähler Jürg
Abstract
AbstractCells balance glycolysis with respiration to support their energetic and biosynthetic needs in different environmental or physiological contexts. With abundant glucose, many cells prefer to grow by aerobic glycolysis, or fermentation in yeast. Using 161 natural isolates of fission yeast, we investigated the genetic basis and phenotypic effects of the fermentation-respiration balance. The laboratory and a few other strains were more dependent on respiration. This trait was associated with a missense variant in a highly conserved region of Pyk1. Pyk1 is the single pyruvate kinase in fission yeast, while most organisms possess isoforms with different activity. This variant reduced Pyk1 activity and glycolytic flux. Replacing the ‘low-activity’pyk1allele in the laboratory strain with the common ‘high-activity’ allele was sufficient to increase fermentation and decrease respiration. This metabolic reprogramming triggered systems-level adaptations in the transcriptome and proteome, and in cellular phenotypes, including increased growth and chronological lifespan, but decreased resistance to oxidative stress. Thus, low Pyk1 activity provided no growth advantage but stress tolerance, despite increased respiration. The genetic tuning of glycolytic flux by a single-nucleotide change might reflect an adaptive trade-off in a species lacking pyruvate-kinase isoforms.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献