Uncertainty quantification of parenchymal tracer distribution using random diffusion and convective velocity fields

Author:

Croci Matteo,Vinje Vegard,Rognes Marie E.

Abstract

ABSTRACTBackgroundInflux and clearance of substances in the brain parenchyma occur by a combination of diffusion and convection, but the relative importance of thiese mechanisms is unclear. Accurate modeling of tracer distributions in the brain relies on parameters that are partially unknown and with literature values varying up to 7 orders of magnitude. In this work, we rigorously quantified the variability of tracer enhancement in the brain resulting from uncertainty in diffusion and convection model parameters.MethodsIn a mesh of a human brain, using the convection-diffusion-reaction equation, we simulated tracer enhancement in the brain parenchyma after intrathecal injection. Several models were tested to assess the uncertainty both in type of diffusion and velocity fields and also the importance of their magnitude. Our results were compared with experimental MRI results of tracer enhancement.ResultsIn models of pure diffusion, the expected amount of tracer in the gray matter reached peak value after 15 hours, while the white matter does not reach peak within 24 hours with high likelihood. Models of the glymphatic system behave qualitatively similar as the models of pure diffusion with respect to expected time to peak but display less variability. However, the expected time to peak was reduced to 11 hours when an additional directionality was prescribed for the glymphatic circulation. In a model including drainage directly from the brain parenchyma, time to peak occured after 6-8 hours for the gray matter.ConclusionEven when uncertainties are taken into account, we find that diffusion alone is not sufficient to explain transport of tracer deep into the white matter as seen in experimental data. A glymphatic velocity field may increase transport if a directional structure is included in the glymphatic circulation.

Publisher

Cold Spring Harbor Laboratory

Reference77 articles.

1. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology

2. N. J. Abbott , M. E. Pizzo , J. E. Preston , D. Janigro , and R. G. Thorne . The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta neuropathologica, pages 1–21, 2018.

3. P. Abrahamsen . A Review of Gaussian Random Fields and Correlation Functions. Norwegian Computing Center, 2 edition, 1997.

4. Vascular Supply of the Cerebral Cortex is Specialized for Cell Layers but Not Columns

5. Convective influx/glymphatic system: tracers injected into the csf enter and leave the brain along separate periarterial basement membrane pathways;Acta neuropathologica,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3