Habitat loss and fragmentation increase realized predator-prey body size ratios

Author:

Hillaert JasmijnORCID,Vandegehuchte Martijn L.ORCID,Hovestadt ThomasORCID,Bonte DriesORCID

Abstract

AbstractIn the absence of predators, habitat fragmentation favors large body sizes in primary consumers with informed movement due to their high gap-crossing ability. However, the body size of primary consumers is not only shaped by such bottom-up effects, but also by top-down effects as predators prefer prey of a certain size. Therefore, higher trophic levels should be taken into consideration when studying the effect of habitat loss and fragmentation on size distributions of herbivores.We built a model to study the effect of habitat loss and fragmentation within a simple food web consisting of (i) a basal resource that is consumed by (ii) a herbivore that in turn is consumed by (iii) a predator. Our results highlight that predation may result in local accumulation of the resource via top-down control of the herbivore. As such, the temporal and spatial variation of the resource distribution is increased, selecting for increased herbivore movement. This results in selection of larger herbivores than in the scenario without predator. As predators cause herbivores to be intrinsically much larger than the optimal sizes selected by habitat fragmentation in the absence of predators, habitat fragmentation is no longer a driver of herbivore size. However, there is selection for increased predator size with habitat fragmentation as herbivores become less abundant, favoring gap-crossing ability of the predator. Since herbivore and predator body size respond differently to habitat loss and fragmentation, realized predator-herbivore body size ratios increase along this fragmentation gradient. Our model predicts the dominance of top-down forces in regulating body size selection in food webs and helps to understand how habitat destruction and fragmentation affect overall food web structure.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3