Abstract
AbstractMutations are the root source of genetic variation and underlie the process of evolution. Although the rates at which mutations occur vary considerably between species, little is known about differences within species, or the genetic and molecular basis of these differences. Here we leveraged the power of the yeast Saccharomyces cerevisiae as a model system to uncover natural genetic variants that underlie variation in mutation rate. We developed a high-throughput fluctuation assay and used it to quantify mutation rates in natural yeast isolates and in 1040 segregant progeny from a cross between BY, a lab strain, and RM, a wine strain. We observed that mutation rate varies among yeast strains and is highly heritable (H2=0.46). We performed linkage mapping in the segregants and identified four quantitative trait loci (QTLs) underlying mutation rate variation in the cross. We fine-mapped two QTLs to the underlying causal genes, RAD5 and MKT1, that contribute to mutation rate variation. These genes also underlie sensitivity to the DNA damaging agents 4NQO and MMS, suggesting a connection between spontaneous mutation rate and mutagen sensitivity.
Publisher
Cold Spring Harbor Laboratory