Preclinical validation of a repurposed metal chelator as a community-based therapeutic for hemotoxic snakebite

Author:

Albulescu Laura-Oana,Hale Melissa,Ainsworth Stuart,Alsolaiss Jaffer,Crittenden Edouard,Calvete Juan J.,Wilkinson Mark C.,Harrison Robert A.,Kool Jeroen,Casewell Nicholas R.

Abstract

AbstractSnakebite envenoming causes 138,000 deaths annually and ~400,000 victims are left with permanent disabilities. Envenoming by saw-scaled vipers (Viperidae: Echis) leads to systemic hemorrhage and coagulopathy, and represents a major cause of snakebite mortality and morbidity in Africa and Asia. The only specific treatment for snakebite, antivenom, has poor specificity, low affordability, and must be administered in clinical settings due to its intravenous delivery and high rates of adverse reactions. This requirement results in major treatment delays in resource-poor regions and impacts substantially on patient outcomes following envenoming. Here we investigated the value of metal chelators as novel community-based therapeutics for snakebite. Among the tested chelators, dimercaprol (British anti-Lewisite) and its derivative 2,3-dimercapto-1-propanesulfonic acid (DMPS), were found to potently antagonize the activity of Zn2+-dependent snake venom metalloproteinase toxins in vitro. Moreover, DMPS prolonged or conferred complete survival in murine preclinical models of envenoming against a variety of saw-scaled viper venoms. DMPS also significantly extended survival in a ‘challenge and treat’ model, where drug administration was delayed post-venom injection, and the oral administration of this chelator provided partial protection against envenoming. Finally, the potential clinical scenario of early oral DMPS therapy combined with a later, delayed, intravenous dose of conventional antivenom provided prolonged protection against the lethal effects of envenoming in vivo. Our findings demonstrate that safe and affordable repurposed metal chelators effectively neutralize saw-scaled viper venoms in vitro and in vivo and highlight the great promise of DMPS as a novel, community-based, early therapeutic intervention for hemotoxic snakebite envenoming.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3