Abstract
AbstractThe intracellular pathogenBurkholderia pseudomallei,which is endemic to parts of southeast Asia and northern Australia, causes the disease melioidosis. Although acute infections can be treated with antibiotics, melioidosis is difficult to cure, and some patients develop chronic infections or a recrudescence of the disease months or years after treatment of the initial infection.B. pseudomalleistrains have a high level of natural resistance to a variety of antibiotics, and with limited options for new antibiotics on the horizon, new alternatives are needed. The aim of the present study was to characterize the metabolic capabilities ofB. pseudomallei, identify metabolites crucial for pathogen survival, understand the metabolic interactions that occur between pathogen and host cells, and determine if metabolic enzymes produced by the pathogen might be potential antibacterial targets. This aim was accomplished through genome scale metabolic modeling under different external conditions: 1) including all nutrients that could be consumed by the model, and 2) providing only the nutrients available in culture media. Using this approach, candidate chokepoint enzymes were identified, then knocked outin silicounder the different nutrient conditions. The effect of each knockout on the metabolic network was examined. When five of the candidate chokepoints were knocked outin silico, the flux through theB. pseudomalleinetwork was decreased, depending on the nutrient conditions. These results demonstrate the utility of genome-scale metabolic modeling methods for drug target identification inB. pseudomallei.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献