Relevance of the iron-responsive element (IRE) pseudotriloop structure for IRP1/2 binding and validation of IRE-like structures using the yeast three-hybrid system

Author:

Chen Shih-Cheng,Olsthoorn René C.L.

Abstract

AbstractIron-responsive-elements (IREs) are ~35-nucleotide (nt) stem-loop RNA structures located in 5′ or 3′ untranslated regions (UTRs) of mRNAs, and mediate post-transcriptional regulation by their association with IRE-binding proteins (IRPs). IREs are characterized by their apical 6-nt loop motif 5′-CAGWGH-3′ (W = A or U and H= A, C or U), the so-called pseudotriloop, of which the loop nts C1 and G5 are paired, and the none-paired C between the two stem regions. In this study, the yeast three-hybrid (Y3H) system was used to investigate the relevance of the pseudotriloop structure of ferritin light chain (FTL) for the IRE-IRP interaction and the binding affinities between variant IRE(-like) structures and the two IRP isoforms, IRP1 and 2. Mutational analysis of FTL IRE showed that deletion of the bulged-out U6 of the pseudotriloop does not significantly affect its binding to either IRP1 or 2, but substitution with C enhances binding of both IRPs. In addition, IRP1 was found more sensitive toward changes in the pseudotriloop-stabilizing C1-G5 base pair than IRP2, while mutation of the conserved G3 was lowering the binding of both IRPs. In comparison to FTL IRE other variant IREs, IRE of 5′-aminolevulinate synthase 2 (ALAS2), SLC40A1 (also known as Ferroportin-1), and endothelial PAS domain protein 1 (EPAS1) mRNA showed slightly higher, similar, and slightly weaker affinity for IRPs, respectively, while SLC11A2 IRE exhibited very weak binding to IRP1 and medium binding to IRP2, indicating the different binding modes of IRP1 and 2. Notably, α-Synuclein IRE showed no detectable binding to either IRP1 or 2. Our results indicate that Y3H represents a bona fide system to characterize binding between IRPs and various IRE-like structures.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3