Structure analysis of human Prion protein involved in Sporadic Fatal Insomnia

Author:

Camp Philip J,Tabaee Damavandi Pardis,Pickersgill Richard W,Dove Martin T

Abstract

AbstractPrion disorders are the root cause of Transmissible Spongiform Encephalopathies (TSE), a group of lethal diseases portrayed by progressive neurodegeneration and spongiosis. In recent years, researchers have come to understand that it is not the endogenous presence of Prions itself that causes neurodegeneration, but the amount of prion proteins that accumulates in the nervous tissue, leading them to exert neurotoxicity. More specifically, the cause of these disorders is mapped to several mutations that can bring the prion protein structure to a disordered permanent misfolded state. Our research is focused on Sporadic Fatal Insomnia (sFI), a rare TSE characterized by severe and chronic insomnia, leading to a life expectancy estimation of about two and a half years, from the onset of the first symptoms. The goal of this work was to analyze through computational studies the structure of the native human Prion Protein (PrPnat) and compare it with the toxic form (FI-Prion) which causes disease. Our findings show that the structure of the human mutant FI-Prion, responsible for Sporadic Fatal Insomnia is more flexible than the native human form PrPnat. Specific regions of the mutant seem to fluctuate more freely than the corresponding loops in the native form. We also identified amino acids Tyr128 and Met129 to be the key residues playing a major role in the manifestation of the disease. Therefore, we’ve learnt that the FI-Prion is more flexible than PrPnat. In addition, we also confirmed that sporadic fatal insomnia is undoubtedly an infectious disease.

Publisher

Cold Spring Harbor Laboratory

Reference32 articles.

1. Comparative prion disease gene expression profiling using the prion disease mimetic, cuprizone

2. B lymphocytes and neuroinvasion

3. Encephalitis lethargica and the influenza virus. II. The influenza pandemic of 1918/19 and encephalitis lethargica: epidemiology and symptoms;J Neural Transm.,2009

4. C. Carnovale et al., “On the association between human papillomavirus vaccine and sleep disorders: evaluation based on vaccine adverse events reporting systems.” J Neural Scienc., (in press).

5. Taenia solium cysticercosis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3