Time course analysis of the brain transcriptome during transitions between brood care and reproduction in the clonal raider ant

Author:

Libbrecht Romain,Oxley Peter R.,Kronauer Daniel J. C.

Abstract

AbstractDivision of labor between reproductive queens and non-reproductive workers that perform brood care is the hallmark of insect societies. However, the molecular basis of this fundamental dichotomy remains poorly understood, in part because the caste of an individual cannot typically be experimentally manipulated at the adult stage. Here we take advantage of the unique biology of the clonal raider ant, Ooceraea biroi, where reproduction and brood care behavior can be experimentally manipulated in adults. To study the molecular regulation of reproduction and brood care, we induced transitions between both states, and monitored brain gene expression at multiple time points. We found that introducing larvae that inhibit reproduction and induce brood care behavior caused much faster changes in adult gene expression than removing larvae. The delayed response to the removal of the larval signal prevents untimely activation of reproduction in O. biroi colonies. This resistance to change when removing a signal also prevents premature modifications in many other biological processes. Furthermore, we found that the general patterns of gene expression differ depending on whether ants transition from reproduction to brood care or vice versa, indicating that gene expression changes between phases are cyclic rather than pendular. Our analyses also identify genes with large and early expression changes in one or both transitions. These genes likely play upstream roles in regulating reproduction and behavior, and thus constitute strong candidates for future molecular studies of the evolution and regulation of reproductive division of labor in insect societies.

Publisher

Cold Spring Harbor Laboratory

Reference72 articles.

1. Maynard Smith J & Szathmary E (1995) The major transitions in evolution (Oxford University Press).

2. Hölldobler B & Wilson EO (1990) The ants (Belknap Press).

3. Molecular mechanisms of phenotypic plasticity in social insects;Current Opinion in Insect Science,2016

4. Molecular Evolution of Insect Sociality: An Eco-Evo-Devo Perspective

5. Genomic sources of phenotypic novelty in the evolution of eusociality in insects;Current Opinion in Insect Science,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3