Using a lentiviral Tet-regulated miR-E shRNA dual color vector to evaluate gene function in human leukemic stem cells in vivo

Author:

Maat Henny,Jaques Jennifer,Vellenga Edo,Huls Gerwin,van den Boom Vincent,Schuringa Jan JacobORCID

Abstract

AbstractRNA interference is a powerful tool to study loss-of-gene function in leukemic cells. Still, in order to identify effective novel treatment strategies to target and eradicate leukemic stem cells (LSCs), it is critically important to study gene function in a well-controlled and time-dependent manner. We implemented a lentiviral Tet-regulated miR-E shRNA dual color vector in our in vitro and in vivo human leukemia models. Thus, we were able to efficiently introduce doxycycline-inducible and reversible gene repression and trace and isolate transduced miR-E shRNA expressing cells over time. As proof of concept we focused on the non-canonical PRC1.1 Polycomb complex, which we previously identified to be essential for LSCs (1). Here, we show that inducible downmodulation of PCGF1 strongly impaired the growth of primary MLL-AF9 cells. Next, a Tet-regulated miR-E PCGF1 human xenograft MLL-AF9 leukemia mouse model was established, which revealed that early knockdown of PCGF1 at the onset of leukemia development significantly reduced peripheral blood chimerism levels and improved overall survival. In contrast, knockdown of PCGF1 when leukemia was already firmly established in the bone marrow proved insufficient to enhance overall survival. Despite these findings, FACS analysis of MLL-AF9/miR-E PCGF1/CD45+/GFP+ populations suggested that particularly cells with inefficient PCGF1 knockdown contributed to leukemogenesis. In conclusion, by building in vivo xenograft leukemia inducible RNAi models, we show that timing of gene knockdown critically impacts on the efficacy of leukemia treatment and that clonal drift still plays a major role in the escape of LSCs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3