Abstract
ABSTRACTThe ecdysone pathway was amongst the first experimental systems employed to study the impact of steroid hormones on the genome. In Drosophila and other insects, ecdysone coordinates developmental transitions, including wholesale transformation of the larva into the adult during metamorphosis. Like other hormones, ecdysone controls gene expression through a nuclear receptor, which functions as a ligand-dependent transcription factor. Although it is clear that ecdysone elicits distinct transcriptional responses within its different target tissues, the role of its receptor, EcR, in regulating target gene expression is incompletely understood. In particular, EcR initiates a cascade of transcription factor expression in response to ecdysone, making it unclear which ecdysone-responsive genes are direct EcR targets. Here, we use the larval-to-prepupal transition of developing wings to examine the role of EcR in gene regulation. Genome-wide DNA binding profiles reveal that EcR exhibits widespread binding across the genome, including at many canonical ecdysone-response genes. However, the majority of its binding sites reside at genes with wing-specific functions. We also find that EcR binding is temporally dynamic, with thousands of binding sites changing over time. RNA-seq reveals that EcR acts as both a temporal gate to block precocious entry to the next developmental stage as well as a temporal trigger to promote the subsequent program. Finally, transgenic reporter analysis indicates that EcR regulates not only temporal changes in target enhancer activity but also spatial patterns. Together, these studies define EcR as a multipurpose, direct regulator of gene expression, greatly expanding its role in coordinating developmental transitions.SIGNIFICANCENuclear receptors (NRs) are sequence-specific DNA binding proteins that act as intracellular receptors for small molecules such as hormones. Prior work has shown that NRs function as ligand-dependent switches that initiate a cascade of gene expression changes. The extent to which NRs function as direct regulators of downstream genes in these hierarchies remains incompletely understood. Here, we study the role of the NR EcR in metamorphosis of the Drosophila wing. We find that EcR directly regulates many genes at the top of the hierarchy as well as at downstream genes. Further, we find that EcR binds distinct sets of target genes at different developmental times. This work helps inform how hormones elicit tissue- and temporal-specific responses in target tissues.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献