A Symmetric Prior for the Regularisation of Elastic Deformations: Improved Anatomical Plausibility in Nonlinear Image Registration

Author:

Lange Frederik JORCID,Ashburner John,Smith Stephen M,Andersson Jesper L R

Abstract

AbstractNonlinear registration is critical to many aspects of Neuroimaging research. It facilitates averaging and comparisons across multiple subjects, as well as reporting of data in a common anatomical frame of reference. It is, however, a fundamentally ill-posed problem, with many possible solutions which minimise a given dissimilarity metric equally well. We present a novel regularisation method that aims to selectively drive solutions towards those which would be considered anatomically plausible by penalising unlikely lineal, areal and volumetric deformations. In addition, our penalty is symmetric in the sense that geometric expansions and contractions are penalised equally, which encourages inverse-consistency. We demonstrate that our method is able to significantly reduce volume and shape distortions compared to state-of-the-art elastic (FNIRT) and plastic (ANTs) registration frameworks. Crucially, this is achieved whilst matching or exceeding the registration quality of these methods, as measured by overlap scores of labelled cortical regions. Furthermore, extensive use of GPU parallelisation has allowed us to implement what is a highly computationally intensive optimisation strategy while maintaining reasonable run times of under half an hour.

Publisher

Cold Spring Harbor Laboratory

Reference67 articles.

1. Andersson, J.L.R. , Jenkinson, M. , Smith, S. , 2007. Non-linear registration, aka spatial normalisation. FMRIB Technial Report TR07JA2. Technical Report June.

2. High resolution nonlinear registration with simultaneous modelling of intensities

3. Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans

4. A fast diffeomorphic image registration algorithm

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3