Author:
Poli Jérôme,Gerhold Christian-Benedikt,Tosi Alessandro,Hustedt Nicole,Seeber Andrew,Sack Ragna,Herzog Franz,Pasero Philippe,Shimada Kenji,Hopfner Karl-Peter,Gasser Susan M.
Abstract
Little is known about how cells ensure DNA replication in the face of RNA polymerase II (RNAPII)-mediated transcription, especially under conditions of replicative stress. Here we present genetic and proteomic analyses from budding yeast that uncover links between the DNA replication checkpoint sensor Mec1–Ddc2 (ATR–ATRIP), the chromatin remodeling complex INO80C (INO80 complex), and the transcription complex PAF1C (PAF1 complex). We found that a subset of chromatin-bound RNAPII is degraded in a manner dependent on Mec1, INO80, and PAF1 complexes in cells exposed to hydroxyurea (HU). On HU, Mec1 triggers the efficient removal of PAF1C and RNAPII from transcribed genes near early firing origins. Failure to evict RNAPII correlates inversely with recovery from replication stress: paf1Δ cells, like ino80 and mec1 mutants, fail to restart forks efficiently after stalling. Our data reveal unexpected synergies between INO80C, Mec1, and PAF1C in the maintenance of genome integrity and suggest a mechanism of RNAPII degradation that reduces transcription–replication fork collision.
Funder
Fondation pour la Recherche sur le Cancer
EMBO
FP7 Marie Curie Intra European Fellowship
Novartis Research Foundation
Swiss National Science Foundation
Human Frontier Science Program
European Research Council
German Research Council
Center for Integrated Protein Science of the German Excellence Initiative
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献